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Abstract— As advances in microscopy imaging provide an
ever clearer window into the human brain, accurate reconstruc-
tion of neural connectivity can yield valuable insight into the
relationship between brain structure and function. However,
human manual tracing is a slow and laborious task, and
requires domain expertise. Automated methods are thus needed
to enable rapid and accurate analysis at scale. In this paper,
we explored deep neural networks for dense axon tracing and
incorporated axon topological information into the loss function
with a goal to improve the performance on both voxel-based
segmentation and axon centerline detection. We evaluated three
approaches using a modified 3D U-Net architecture trained on
a mouse brain dataset imaged with light sheet microscopy and
achieved a 10% increase in axon tracing accuracy over previous
methods. Furthermore, the addition of centerline awareness in
the loss function outperformed the baseline approach across all
metrics, including a boost in Rand Index by 8%.

I. INTRODUCTION

As high-resolution brain imaging techniques continue to
improve, one of the biggest challenges in generating connec-
tivity maps of the human brain is the automatic identification
of cellular structures from raw imagery [1]. Manual human
annotation is thought to be accurate, but will not scale to
reconstructing projection profiles of the billions of neurons
required to fully map a single human brain. Therefore, it is
necessary to develop methods of tracing neurons that rival
human performance but with minimal human intervention.

One approach that has yielded human-like performance
on biomedical image segmentation tasks is supervised learn-
ing using deep convolutional neural networks (CNNs). In
particular, the U-Net architecture has achieved state-of-the-
art results, exceeding the threshold of human performance
in the SNEMI3D Connectomics Challenge in 2017 [2], [3].
To obtain a connectivity map from a segmented subcellular-
resolution brain image, the segmentation mask can be pro-
cessed using downstream morphological thinning and graph
extraction algorithms [4]. However, artifacts uncovered dur-
ing these post-processing steps, such as fragments where
gaps are mistakenly introduced or incorrect merging of
distinct fibers, are not visible to the segmentation model,
limiting its ability to learn more accurate representations.

In recent years, there have been several deep CNN ar-
chitectures proposed to merge the steps of semantic seg-
mentation, morphological thinning, and path identification
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commonly done separately in a broader class of “tubular
segmentation” problems. It has been observed that across
varied computer vision tasks including neurite tracing, blood
vessel segmentation, and aerial road mapping, a common
objective is the recovery of curvilinear spatial trajectories,
rather than a full, pixel-wise segmentation [5]. While neu-
rons and roads have completely different morphologies, the
techniques needed to accurately map network connectivity
may be similar.

This paper makes the following contributions:

• We adapted two recent deep learning-based segmenta-
tion techniques making use of ground truth centerline
information to the task of axon tracing in light sheet
microscopy data:

1) CasNet: A cascading segmentation and centerline
detection network previously used for road detec-
tion [6]

2) soft-clDice: An alternative loss function that in-
corporates parameter-free skeletonization directly
into the training procedure [7]

• We demonstrated an increase in both segmentation
and centerline detection performance over a baseline
of voxel-wise classification followed by morphological
thinning as a post-processing step

II. METHODS AND MATERIALS

A. Dataset

For algorithm development, we used a light sheet mi-
croscopy dataset imaged from a piece of mouse brain tissue
prepared under 3× expansion, with a stain targeting Parval-
bumin positive neurons from the globus pallidus externus
(PVGPe). These methods stabilize the tissue with clear
hydrogels that preserve biomolecules and enable removal of
lipids, rendering unstained portions of the sample optically
transparent [8]. The full PVGPe volume is 2048×2048×1271
voxels, with a voxel resolution of 0.6×0.6×2 µm, but only
a 256×256×206 voxel (148×148×412 µm) subvolume was
annotated manually (Fig. 1). Two labelers traced axon fibers
in the annotation subvolume using ImageJ [9]. Following
previous experiments on this dataset [10], we preprocessed
the imagery by clipping the highest and lowest 0.01% of
values, applying a median filter, and scaling between 0 and
1. The dataset is subdivided into contiguous training (50%),
validation (25%), and testing (25%) regions, which were fed
into the model as 128×128×64 voxel samples.
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(a)

(b) (c)

Fig. 1. Maximum intensity projections along the Z-axis of the PVGPe
dataset: a) Full volume; b) Labeled subvolume (Region 1); c) Unlabeled
subvolume (Region 2).

B. Architectures

1) 3D U-Net: The U-Net architecture consists of con-
volutional layers interspersed with downsampling to form
sequentially lower-resolution modules in an encoder path,
followed by upsampling to restore the original resolution in
a decoder path, with lateral skip connections between same-
resolution encoder and decoder modules [2]. We used 3×3×3
convolutional layers followed by group normalization and
exponential linear units. Summation joining was chosen for
skip connections with an additional skip connection between
the first and last convolutional layer in each module. We
also used strided 2×2×2 max-pooling for downsampling,
and strided transpose convolutions with max-pooling for
upsampling [3], [11] . In our baseline approach, we trained a
residual 3D U-Net with 4 resolution blocks to perform voxel-
wise classification using binary cross entropy loss between
the output and training images (Fig. 2(a)). The resulting
segmentation was then binarized using a threshold of 0.5,
and skeletonized using morphological thinning to obtain a
single voxel wide centerline [12].

2) CasNet: Originally proposed for the task of road map-
ping, a cascaded CNN can be used to perform simultaneous
segmentation and centerline prediction [6]. In this approach,
the output of a CNN trained to perform semantic segmen-
tation provides the input to a second, simpler CNN that
directly predicts centerline pixels. During back propagation,
the segmentation network accumulates gradients of the loss
functions for both tasks, forcing it learn a representation

retaining information that is useful for centerline detection
as well. We adapted a CasNet architecture consisting of a
depth-4 (i.e. 4 resolution blocks) 3D U-Net for segmentation,
cascading into a depth-3 3D U-Net for centerline prediction
(Fig. 2(b)). The loss function is the sum of the segmentation
loss, computed between the output of the upstream network
and the training image, and the centerline detection loss,
computed between the output of the downstream network
and a thin binary skeleton extracted from the training image.
Cheng et al. [6] used cross entropy loss for both terms;
however, due to the extreme class imbalance present in
the 3D centerline dataset, we chose modified Dice loss
instead [13].

3) 3D U-Net + clDice: Recently, soft centerline-Dice
(clDice) was proposed as a loss function for segmentation
problems emphasizing preservation of topology [7]. clDice
between a predicted segmentation (VP ) and a ground truth
segmentation (VL) and their extracted skeletons (SP and SL,
respectively) is defined as the harmonic mean between topo-
logical precision (Tprec) and topological sensitivity (Tsens):

Tprec =
|SP ∩ VL|

|SP |
(1)

Tsens =
|SL ∩ VP |

|SL|
(2)

clDice = 2× Tprec × Tsens

Tprec + Tsens
(3)

Specifically, Tprec is the proportion of the predicted skele-
ton that lies within the ground truth segmentation, and Tsens

is the proportion of the ground truth skeleton recovered by
the predicted segmentation. Since the morphological dilation
and erosion operations traditionally used to extract pixel-
wide skeletons are not differentiable, a “soft-skeletonization”
operation was also introduced by using iterative min- and
max-pooling to achieve a similar effect. Finally, a loss
function combining clDice and Dice terms was proposed:

L = α(1− clDice) + (1− α)(1−Dice) (4)

To test this method for axon tracing using our own data,
we used the baseline 3D U-Net architecture, but replaced
binary cross entropy with soft-clDice loss, using α = 0.5
(Fig. 2(c)).

C. Training

Each candidate architecture was trained via stochastic
gradient descent using the ADAM optimizer [14] with an
initial learning rate of 1×10−4 and weight decay of 1×10−3.
For training, mini batches of 16 samples were randomly
cropped from the input dataset, and augmented using ran-
dom grayscale perturbations, random 90◦ X-Y rotations,
and random flipping. For inference, samples were cropped
using a sliding window with 50% overlap and blended
using a 3D Hann window to minimize segmentation errors
along the edge of the receptive field. We also incorporated
test-time augmentation, by averaging predictions across 16
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(a)

(b) (c)

Fig. 2. a) Baseline approach uses a residual 3D U-Net architecture to segment the image, followed by binary thresholding and morphological thinning
to obtain a voxel-wide skeleton. b) Cascading 3D U-Net (CasNet) passes its segmentation output into a smaller 3D U-Net that predicts centerline voxels.
c) Soft-clDice thins the 3D U-Net segmentation output using soft-skeletonization (purple arrows) so that centerline information can be incorporated into
the loss function.

transformations for each input sample (unique combinations
of X-Y 90◦ rotations and flipping along each axis). Test-
time augmentation has been shown to improve segmentation
performance at the expense of a linear increase in infer-
ence time [2]. For each model, training proceeded until
convergence or until no improvement in validation loss was
observed over a period of 20 epochs. To account for noise
due to random initialization and the relatively small test set
size, each experiment was repeated 10 times.

III. RESULTS

A. Evaluation Metrics

Segmentation performance was evaluated using three met-
rics: 1) Dice coefficient, which measures voxel-wise simi-
larity between the ground truth and predicted binary seg-
mentation masks, 2) clDice, which emphasizes homotopy-
equivalence between ground truth and predicted segments,
and 3) the adjusted-for-chance Rand Index (ARI) [15],
which measures agreement between ground truth and pre-
dicted clusterings. Clusters were obtained by finding the
connected components of foreground structures.

Centerline detection was evaluated using a variation of
Dice score in which any prediction falling within ρ voxels of
the ground truth is considered a true positive. The motivation
behind this metric, which we will refer to as ρ-Dice, is to

measure centerline accuracy in a way that does not exces-
sively penalize minor deviations from the ground truth [6].
It is formulated as the inverse of clDice, defining ρ-precision
and ρ-sensitivity as:

ρprec =
|SP ∩ SL,ρ|

|SP |
(5)

ρsens =
|SL ∩ SP,ρ|

|SL|
(6)

ρ-Dice = 2× ρprec × ρsens
ρprec + ρsens

(7)

where SL,ρ and SP,ρ denote the ground truth and pre-
dicted skeletons, respectively, following binary dilation by ρ
voxels. Centerline predictions are always single-voxel-wide
skeletons obtained via morphological thinning of a model’s
output.

B. Experimental Results

The mean and standard deviation for each metric over 10
trials of model training and testing (Table I) were reported.
For CasNet, which makes two predictions, we computed ρ-
Dice using its downstream centerline detection output, and
Dice and clDice using its segmentation output. 3D U-Net +
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(a) (b) (c) (d)

Fig. 3. a) Maximum intensity projection along the Z-axis of test volume.
b) 3D U-Net, c) CasNet, and d) 3D U-Net + clDice tracing results overlaid
with true positive centerline predictions (green), false negatives (blue) and
false positives (red). 3D U-Net + clDice results show fewer fragmenting
errors caused by false negative predictions.

clDice outperformed both CasNet and the baseline 3D U-
Net across every metric, and the Dice score exceeded the
best score previously reported for segmentation on the same
dataset [10] by 10%.

Qualitative results for centerline detection are shown in
Fig. 3. The fiber tracings from 3D U-Net + clDice (Fig. 3(d))
show fewer splitting errors caused by false negative predic-
tions. In Fig. 4(a), a 3D view of fiber tracings generated by
applying the trained 3D U-Net + clDice to the full PVGPe
volume are displayed. The shortest 10% of tracing lengths
are filtered out to suppress noise and improve visual clarity.
Empirical distributions of fiber lengths (Fig. 4(b) and 4(c))
were computed for ground truth tracings in the annotated
subvolume (Region 1,, Fig. 1(b)), as well as for automated
tracings on a nearby, previously unlabeled subvolume of
identical size (Region 2, Fig. 1(c)). It can been seen that
the fiber distribution from the automated tracing resemble
closely that from the manual tracing.

IV. DISCUSSION

Soft-clDice loss appears to improve both segmentation and
centerline detection of dense axon imagery from light sheet
microscopy. Interestingly, it was noted that the motivation
behind clDice was to improve topology preservation in
semantic segmentation tasks, rather than to directly improve
centerline detection [7]. In tasks where only centerline
detection is relevant (e.g. for connectivity mapping), it is
possible that the loss function could be further refined. For
example, using the ρ-Dice formulation and max-pooling
for dilation, a model could be trained to directly predict
the foreground skeleton while tolerating slight errors in
spatial trajectory. Such an approach would have similarities

(a)

(b)

(c)

Fig. 4. a) 3D view of full volume algorithm-predicted tracings, with the
shortest 10% of fiber segments filtered out. b) Histograms and c) Empirical
cumulative distributions of fiber lengths recovered by ground truth tracings
from the labeled subvolume (Region 1, , Fig. 1(b)) and algorithm-predicted
tracings from a separate subvolume of identical size (Region 2, , Fig. 1(c)).
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TABLE I
DICE, CLDICE, ρ-DICE, AND ADJUSTED RAND INDEX (ARI) ARE REPORTED AS MEAN AND STANDARD DEVIATION FOR 10 TRIALS OF EACH

EXPERIMENT. 3D U-NET + CLDICE PERFORMS BEST ACROSS EACH METRIC, AS INDICATED BY BOLD.

Dice clDice ρ-Dice (ρ = 3) ARI
Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

3D U-Net 0.580 0.027 0.720 0.020 0.761 0.015 0.575 0.027
CasNet 0.598 0.002 0.763 0.010 0.750 0.004 0.593 0.002

3D U-Net + clDice 0.628 0.018 0.785 0.018 0.787 0.021 0.623 0.018

to previous work treating centerline prediction as regression
on distance from the true centerline [16]. Alternatively,
because max-pooling could mask splitting errors in predicted
centerlines, indirect foreground dilation could be achieved
via soft-skeletonization of the background segment.

There are conceptual similarities between the CasNet and
3D U-Net + clDice approaches: the centerline detection
network in CasNet, which is trained to predict the skeleton
of the segmentation output, can be seen as a “black box”
approximation to morphological thinning, while clDice uses
min- and max-pooling operations to achieve the same effect.
However, clDice has no tunable parameters associated with
skeletonization and therefore may be less prone to overfitting.

Since the virally labeled PV-expressing cells have many
sub-classes with different projection patterns, there are
variations in neurite morphology that may be missed by
only training on the labeled data. Previous experiments on
the PVGPe dataset showed an improvement in segmenta-
tion performance by pretraining a 3D U-Net on a self-
supervised learning task using unlabeled data. Combining the
topologically-aware approaches demonstrated in this paper
with self-supervised learning on unlabeled data could yield
further improvements with more generalizability.

V. CONCLUSION
In this paper, we explored deep learning-based axon trac-

ing with topological information incorporated into the loss
function. We evaluated three approaches using a modified 3D
U-Net architecture trained on a mouse brain dataset imaged
with light sheet microscopy and achieved a 10% increase in
axon tracing accuracy over previous methods. Furthermore,
the addition of centerline awareness in the loss function
outperformed baseline approach across all metrics, including
a boost in the Rand Index by 8%.
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