
A Scalable Inference Pipeline for
3D Axon Tracing Algorithms

Benjamin Fenelon1, Lars A. Gjesteby1, Webster Guan2, Juhyuk Park2, Kwanghun Chung2, Laura J. Brattain1
1Human Health & Performance Systems, MIT Lincoln Laboratory, Lexington, MA, USA

2Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
{benjamin.fenelon, lars.gjesteby, brattainl}@ll.mit.edu

{wjguan, juhyuk, khchung}@mit.edu

Abstract—High inference times of machine learning-based
axon tracing algorithms pose a significant challenge to the
practical analysis and interpretation of large-scale brain imagery.
This paper explores a distributed data pipeline that employs
a SLURM-based job array to run multiple machine learning
algorithm predictions simultaneously. Image volumes were split
into N (1-16) equal chunks that are each handled by a unique
compute node and stitched back together into a single 3D
prediction. Preliminary results comparing the inference speed
of 1 versus 16 node job arrays demonstrated a 90.95% decrease
in compute time for 32 GB input volume and 88.41% for 4 GB
input volume. The general pipeline may serve as a baseline for
future improved implementations on larger input volumes which
can be tuned to various application domains.

Index Terms—Brain mapping, machine learning, axon tracing,
high performance computing, parallel processing

I. INTRODUCTION

As advances in high throughput and high resolution brain
imaging continue, the prospect of mapping a whole human
brain at cellular and sub-cellular resolutions becomes increas-
ingly more achievable. While manual tracing of axons may
be considered as the gold standard of accuracy, this laborious
task will not scale to reconstructing connections between the
tens of billions of neurons throughout the human brain. A
major goal in large-scale brain mapping is to develop image
processing pipelines that can perform automatic segmentation
of neuron structures from raw imagery [1] of massive data
sizes ranging from gigabytes to petabytes. There is a critical
need to optimize automated neuron segmentation methods that
rival human performance. Machine learning (ML) algorithms
have shown promise in automated analysis, but the current
long ML training and inference times for large volumes create
a bottleneck to the downstream interactive analysis.

Recent work has demonstrated methods toward high-
throughput imaging and algorithm pipelines for various tasks
in brain mapping. Most of the existing work focuses on im-
proving ML model training performance. Very few address the
long inference time, which is still a significant gap. One study
looked at segmentation of unmyelinated axon fibers of vagus
and pelvic nerves in rats imaged with transmission electron
microscopy [2]. The image slices were very thin, between 70-
90 nm, and each image was divided into a number of tiles
ranging from 20 to 200. For a single slice, the inference time

© 2022 Massachusetts Institute of Technology.

was reported as 54-250 seconds, depending on the tile size
(256-768 pixels). While this work shows effectiveness for the
prescribed task, it does not go as far as processing dense 3D
volumes from light sheet microscopy that cover larger fields of
view. Another study demonstrated a pipeline for whole brain
fluorescence imaging of primate brains combined with long-
range axon tracing [3]. The authors reported automated tracing
speeds of 10-30 mm/h, with approximately 4 terabytes of data
accessed during tracing, which is a promising step in the right
direction.

In our paper, a distributed data pipeline is developed for
simultaneous inference of a 3D ML-based axon tracing al-
gorithm across multiple lightsheet microscopy image volume
chunks. The experiments compare various image volume sizes
and numbers of compute nodes to demonstrate substantial
speed-up and scalability of voxel processing time.

II. MATERIALS AND METHODS

A. Dataset Description

The dataset used in this study has been described in re-
cent work. Briefly, a 1-mm-thick human brain tissue-gel was
immunostained with anti-NFH (neurofilament heavy chain)
antibody after tissue clearing with the mELAST technique [4]–
[6]. The tissue was imaged with light sheet microscopy using
a 15x objective after 3x physical expansion, and the resulting
volume measured 18469 × 7571 × 9422 voxels with voxel
dimensions 0.299 x 0.422 x 0.299 µm. Input volumes for this
paper were extracted from the full dataset by specifying unique
index ranges and converting to a stacked image format (.zarr
to .tiff) with the following sizes:

• 256 × 256 × 256 voxels (64 MB)
• 1024 × 1024 × 1024 voxels (4 GB)
• 2048 × 2048 × 2048 voxels (32 GB)
Each input volume was preprocessed as described in prior

work [7], by clipping the lowest and highest 0.01% values,
applying a median filter, scaling the values to [0,1] with min-
max normalization, and converting to the model input format
(.h5). After preprocessing, each input volume was treated as
an independent dataset for ML model prediction, passed as
samples of 128 × 128 × 64 voxels. Due to this fixed sample
size, the 256-cubed voxel input volume could only be split
across a maximum of 4 compute nodes.

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 H
ig

h
Pe

rf
or

m
an

ce
 E

xt
re

m
e

Co
m

pu
tin

g
Co

nf
er

en
ce

 (H
PE

C)
 |

 9
78

-1
-6

65
4-

97
86

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
HP

EC
55

82
1.

20
22

.9
92

64
03

Authorized licensed use limited to: MIT Libraries. Downloaded on April 11,2023 at 19:03:14 UTC from IEEE Xplore. Restrictions apply.

B. Axon Tracing Algorithm

The deep learning-based axon tracing algorithm utilized in
this study was previously developed in [8]. Using a dataset
with focus on parvalbumin positive neurons from the globus
pallidus externus (PVGPe), the axon centerline detection algo-
rithm achieved improved performance through a topologically
aware loss function. The best-performing architecture was a
3D U-Net [9] with a centerline dice (clDice) loss function [10].
This model was selected for inference on the 3 aforementioned
input volumes to establish a baseline time and investigate
the relationship between performance (time) and image size
(voxels).

The inference algorithm accepts preprocessed axon imagery
and generates predictions of the same data format using a
selected pretrained ML model. A SLURM batch job [11]
allocates 1 compute node with 2 GPUs to the model and
unpacks the input data. Before loading, the image samples are
cropped using a sliding window (50% overlap) and blended
using a 3D Hann window to minimize prediction errors along
the edge of the receptive field. The model can then process
the 8 input batches as parallel microbatches using DataParal-
lel [12]. Additional steps may be taken in post-processing to
convert predictions to visualizations, though not evaluated in
this study.

C. High performance computing environment

In our high performance computing (HPC) system, we were
able to access compute nodes each equipped with 2 Intel Xeon
Gold 6248 CPUs (40 total cores) and 2 NVIDIA Volta V100
GPUs accessible through a SLURM workload manager [11].
With exclusive access, a single node provides 384 GB of node
RAM and 64 GB of GPU RAM (32 GB each).

A single compute node with 2 Volta GPUs was used for
the baseline job submission and extended to a job array for
N simultaneous submissions of the inference job. A SLURM
job array submission allocates the user requested resources
for N jobs with indices {0, ... , N-1}. In other words, the
array is an efficient loop of N independent jobs, each with
one of N compute nodes. This is possible from a single array
submission because each job is performing the same operation
on unique inputs. If there are not enough nodes available to
the user, the remaining jobs will be queued until resources are
available. The maximum allocation of GPUs for a base user
of TX-Green is 32, therefore the experiments of this paper
explore a maximum job array size of 16 compute nodes.

D. Data Inference Pipeline

The proposed data processing pipeline is intended to speed
up inference time, or the elapsed time from preprocessed data
to saved prediction, by splitting the task into three modular
components. Due to the size of data, the RAM necessary
for processing may exceed the single node capacity and fail
to complete the task. By splitting into three separate steps,
each output was saved to disk storage before proceeding to
the next operation and preserved in case of a downstream
failure. These saved checkpoints also enabled user validation

after each operation to ensure correctness. If RAM restrictions
were removed and validation unnecessary, the pipeline may be
implemented as a single job that performs all operations under
one master.

Illustrated in Fig.1, the HPC pipeline consists of 3 in-
dependent job submissions associated with one raw image
input volume executed as sequential operations: split, run, and
stitch. The graphic itself includes examples of a raw image
(2048-cubed voxels) and a post-processed final prediction. The
cubes are oversimplified for visualization purposes depicting
3 squared frames imposed on 3 faces of a cube. The input and
output arrows outside of the boundary labeled HPC pipeline
represent the preprocessing and postprocessing steps as the
preceding and succeeding operations of the proposed pipeline.
Therefore, the scope of this paper’s experiments are within
this green dotted boundary. All scripts within this boundary
are stored and executed on our HPC cluster along with the
referenced axon centerline algorithm.

1) Split Operation: The preprocessed input and prediction
output data have array-like structures [13], which simplify
split and stitch to NumPy operations. To split, N adjacent
chunks were created using np.array split [14] along the z-
axis. For values of N that could not equally divide the input, 2
array shapes were selected until no data was lost. All chunks
were saved as standalone files by a unique filename index
that corresponded to the order of the split operation. Here the
operation may be reversed by assembling files from index 0 to
N-1 until the filesize is equivalent to the unsplit input volume.

2) ML Inference: The inference procedure was a job
array that requests N compute nodes, each with 2 Volta
GPUs and 40 cores of Xeon Gold CPUs, to handle the
chunks of the input volumes. Since each chunk corre-
sponded to an independent node, the environment variable
”SLURM ARRAY TASK ID” indicated which filename to
process. After performing model inference, a prediction was
saved to a file similar to each chunk, including a unique index
identifier that preserved split order.

While this approach was a long running batch job, future
implementations may seek to make the pipeline many modular
steps that can take advantage of node-based job scheduling
for short running jobs [15]. Developing a solution with an
emphasis on small repetitive tasks, the inference step can be
further adapted for smaller chunks, model batch input, and less
resources per operation. However, to maintain a comparison
with the performance of the previous axon detection work [8],
the aforementioned parameters were preserved.

3) Stitch Operation: Once the inference stage was finished,
the stitch job was submitted to reconstruct the original shape
of the input volumes. The predictions were sorted by the split
index in the filename and data was concatenated along the
z-axis. The final stitch was saved as an independent file of
array-like data with the same shape as the preprocessed input.
By caching the output of each step to disk storage as a saved
file, the storage requirement would be the sum of input size,
split size, inference size, and final result. While necessary in

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on April 11,2023 at 19:03:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Overview of proposed distributed and parallel inference pipeline.

testing the pipeline for validity, future implementations may
seek to cache the step outputs in RAM or delete after use.

III. EXPERIMENTAL RESULTS

A. Modular Component Evaluation

The proposed image processing pipeline sought to address
the long inference times associated with large input volumes
by distributing across compute nodes. To understand the
relationship between inference time and compute nodes, the
selection of N was bounded to the range of 1 to 16. The
upper bound of 16 was set by resource constraints and lower
bound of 1 set to compare scaled performance. The remaining
numbers 2, 4, 6, and 8 were selected to observe trends across
magnitudes and uneven splits. With 3 distinct image input
volumes and set of N, each step of the pipeline was measured
for elapsed time and summed for a total start to end time. Due
to the modular structure, the order of job submission varied
and certain long running models were not run immediately
after split.

Each compute node in the job array has a unique job
ID that was monitored with SLURM bash and analyzed for
elapsed time after successful completion. The code for each
step logged computational runtime, however the elapsed time
outputted by sacct (SLURM) was more indicative of wall
time (the actual time taken from the start to the end) and
therefore a better indicator of usability. In the duration of
these experiments, the average difference between these times
was 2.64s and the maximum was 15s, which was the 4
node split of 1024-cubed voxels. Considering this, there was
negligible difference in the times and the longest was selected
for analysis.

Since resource allocation can vary, the pipeline job sub-
missions were subject to node availability and limited by the
number of ongoing processes. The length of the job arrays
contributed to a variability in times as each node was assigned
simultaneously, but completed at a different time. Each of
these end times were recorded and the longest was selected for
sum time, since each step of the pipeline must fully complete

before moving to the next. For more suggestive times, each
experiment would ideally be performed multiple times and
averaged or pruned of outliers.

B. Input Volume Selection

Originally, the single node pipeline included a split and
stitch step, however for practical purposes there was no reason
to perform these two operations, and thus they were redacted
from results. However, the size of the split and stitch files were
consistent with the untouched alternatives and confirmed the
preservation of data in the pipeline. This continued with the
6 node split, where the shape and size of data were preserved
despite an uneven split along the z-axis. The resulting chunks
were of 2 different sizes (2048-cubed: 5.32/5.34 GB, 1024-
cubed: 680/684 MB). Again, the smallest input volumes, 256-
cubed voxels, was processed by a maximum of 4 distributed
nodes due to the crop size of the model preventing a higher
order of splits. The range of inference input sizes for each
input volume after split among 1-16 nodes was as follows:

• 2048 × 2048 × 2048 voxels: 32 GB - 2 GB
• 1024 × 1024 × 1024 voxels: 4 GB - 256 MB
• 256 × 256 × 256 voxels: 64 MB - 16 MB
The largest input volume in this experiment was less than

1% of the total NFH volume and was not characteristic of
the entire imagery. However, for scale, the annotated training
data in the original implementation was 256-cubed voxels [8],
the smallest input volume selected for inference and 512×
smaller than the largest. The experiments here can still serve
as a useful indication of scalability on much larger volumes.

C. Pipeline Performance

Selected results for experiments across 4 distinct node
counts were recorded in Table I. Image dimensions separate
the 3 input volumes investigated and each include a baseline
(no pipeline), 1 node, 2 node, and best node performance. For
a given input volume, the best node refers to the pipeline with
shortest time to stitched prediction, or sum of elapsed times
for each component of the pipeline. In all cases, the largest

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on April 11,2023 at 19:03:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DISTRIBUTED PIPELINE TIME SUMMARY

Image Voxel Size Node Count Per Node Input Size Split Time Inference Time Stitch Time Total Time Time Per Voxel (µs)

256 × 256 × 256

Baseline 64 MB X 00:08:26 X 00:08:26 30.16
1 Node 64 MB X 00:08:13 X 00:08:13 30.46
2 Node 32 MB 00:00:05 00:04:51 (+4.81%) 00:00:08 00:05:04 18.12
4 Node 16 MB 00:00:04 00:03:00 (+6.11%) 00:00:03 00:03:04 10.97

1024 × 1024 × 1024

Baseline 4 GB X 05:43:13 X 05:43:13 19.18
1 Node 4 GB X 05:44:35 X 05:44:35 19.26
2 Node 2 GB 00:00:06 02:58:49 (+0.34%) 00:01:47 03:00:42 10.10
16 Node 256 MB 00:00:43 00:34:11 (+7.22%) 00:04:53 00:39:47 2.22

2048 × 2048 × 2048

Baseline 32 GB X 42:48:17 X 42:48:17 17.88
1 Node 32 GB X 42:29:45 X 42:29:45 17.77
2 Node 16 GB 00:03:40 21:38:14 (+0.11%) 00:18:31 22:00:05 9.22
16 Node 2 GB 00:01:45 03:25:34 (+4.68%) 00:25:07 03:52:26 1.62

*Bold indicates the best time (HH:MM:SS) per voxel size including unlisted node counts

possible number of nodes for a given input volume yielded
the best performance.

The inference times include the percent difference between
first and last node completion in a given pipeline. This percent-
age number steadily increased with N for all input volumes
and highlights the variability in distributing across multiple
workers. In calculation, the maximum overall difference by
value was 00:09:37 (HH:MM:SS) (16 node pipeline on 2048-
cubed voxels). The difference may be on the resource level or
due to varying image density.

The split, longest inference, and stitch times were summed
for each node count to compute the total time. This time
demonstrated the overall elapsed time from a preprocessed
input volume to final prediction. The total time was also
divided by the number of voxels in a given input volume
to determine the time to process a single voxel. For each
pipeline, the aggregate time, or summation of all elapsed
times, was larger than each baseline. Therefore, the expense
for a significant decrease in wall time was an increase in total
computation time.

1) Split Performance: The splitting operation iterated over
the range of 1-16 nodes to save distinct chunks. The per-node
input size was the size of each distinct chunk. The split times
did not reflect a strict pattern in relation to node count, despite
the table suggesting a mostly decreasing relationship. This
conclusion was reached when the direction of change (positive
or negative) for split time was not shared for any span of node
counts across all 3 input volumes. However, split time strictly
increased with voxel size for all node counts. By decreasing
input volume size, the ranges for split time were 00:01:55,
00:01:00, and 00:00:01. The lack of strict correlation between
number of splits and time did not present a clear bottleneck
in relation to the tested variables. To uncover unseen trends,
future work may be interested in performing the split operation
multiple times for each node count.

2) Inference Performance: In this study, there were two
bases for comparison. A baseline non-pipeline inference time
with no split and stitching operations, and a single node
inference with the prediction implementation used in the
pipeline. The single node pipeline was a refactored iteration

Fig. 2. Total inference time across number of compute nodes in job array.

Fig. 3. Percent time decrease from non-pipeline baseline across number of
compute nodes.

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on April 11,2023 at 19:03:14 UTC from IEEE Xplore. Restrictions apply.

of the baseline with a time logger function and environment
variable checker that updated the input path. The baseline was
submitted as a batch job and the single node pipeline submitted
as a single node job array. Using both as baseline numbers,
all job array submissions were compared to each other as well
as to the first recorded time. The trend between nodes and
inference times was inverse, but not linear as each recorded
inference time had less scaled improvement. The total time
was plotted in Fig. 2 as a function of the number of nodes
across voxel sizes. The improvement decays across node count
and increased with input volume voxel size. If scaled without
decay, each 16 node pipeline would perform 16× faster than
the 1 node. In experimentation, the improvement factor for
inference times on 2, 4, 6, 8, and 16 nodes was as follows,
respectively:

• 2048 × 2048 × 2048 voxels: 1.93x, 3.65x, 4.69x, 6.68x,
10.98x

• 1024 × 1024 × 1024 voxels: 1.91x, 3.47x, 4.40x, 6.07x,
8.66x

• 256 × 256 × 256 voxels: 1.68x, 2.78x

The relationship between improvement scale and voxel size
further increased across node count. The exploration of higher
node counts and larger input volumes may add to these trends
and suggest optimal selection of N given image dimensions.
The least decay for any node count was with smallest N, which
was 2 for all input volume sizes, with the closest being 1.93x
improvement for 2048-cubed voxels.

In Fig. 3 each experiment time was compared to the baseline
by percent decrease, as a measure of separation from the
previously accepted time. The decay mentioned above was
illustrated in the plot as the slope between points decreased as
the number of nodes increased, but the point values increased
with voxel size. Likewise, Fig. 2 preserved this information
as each slope between points was less steep over time, though
the separation between voxel sizes was greater due to the
increased magnitude of total time. The overall decrease in time
to prediction suggested that when executing multiple job arrays
simultaneously, multiple tasks will be completed sooner and
free up the resources for more jobs/users.

3) Stitch Performance: The stitch process was an axis-wise
concatenation of the sorted predictions. Similar to the split
time, there was high variability in stitching. The stitch time of
the 2048-cubed and 1024-cubed voxel input volumes increased
from 2 nodes to 16 nodes, with a difference of 00:06:36 and
00:03:06, respectively. In contrast, the stitch time of the 256-
cubed voxel input volume decreased from 2 nodes to 4 nodes
by 5 seconds. The maximum stitch times for each dataset,
from largest to smallest input volume, were for 6 nodes, 4
nodes, and 2 nodes, respectively. The magnitude of split time
increased with voxel size across all nodes. The magnitude of
change between average stitch time was 36.18× from 256-
cubed to 1024-cubed voxels and 6.90× from 1024-cubed to
2048-cubed voxels. Stitch time for a given node count was
unpredictable given the current tested variables, but increased
with input volume size.

Fig. 4. Time per voxel for each input volume across number of compute
nodes.

4) Total Time for Pipeline: The most influential term in
the summation of total time was inference time due to its
proportion. As described above, no clear linear trend exists
for split and stitch times across node count. For this set of
input volumes and nodes, the best inference time led to the best
total time. Yet given enough nodes and the continuation of this
trend, the total time for a input volume may be limited by the
stitch operation, the second most time-consuming step of the
pipeline and more than 5× larger than splitting. This implied
that future improvements to inference time will decrease
overall time and increase the magnitude of improvement over
the baseline.

Depicted in Fig. 4, the time per voxel (TPV) highlights the
scalability of the pipeline in processing data of different sizes.
It can be observed that there is a sharp decrease in TPV as
the number of nodes increases. In addition, the TPVs of 1024
cube and 2048 cube track each other nicely without significant
changes. This indicates the potential of maintaining consistent
TPV as the input volume size increases.

IV. DISCUSSION AND FUTURE WORK

This paper demonstrated a scalable ML model inference
pipeline for axon tracing algorithms to support large-scale
brain mapping. Through three distinct input volumes of im-
agery, the distributed data inference pipeline was tested for
scalability across varying compute nodes and dataset sizes.
The results showed significant decreases in wall time, or time
to final stitch, using 2 to 16 compute nodes each equipped
with 2 Volta GPUs. Particularly noteworthy was the time
improvement of the largest input volume (2048-cubed voxels)
from its baseline time of 42:48:17 to 03:25:34, a 90.95%
decrease. Additionally, the modular structure of the pipeline
enabled an increased awareness and validation of operations as
the output of each was saved independently before facilitating
the next step in the pipeline. Further analysis can be done

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on April 11,2023 at 19:03:14 UTC from IEEE Xplore. Restrictions apply.

on other types of compute nodes available in a typical HPC
environment.

The axon tracing algorithm [8] may be further explored and
tuned to meet the demands of a particular dataset. The current
crop size of the ML model is 128 × 128 × 64 voxels. This
was set to compare to the non-pipeline baselines, but may be
changed by the user according to the raw image shape. In turn,
a small enough crop size would allow the 256-cubed voxels
data to be processed with more than 4 nodes. Microbatch size
may also be increased to enable deeper parallel processing
with DataParallel.

Future iterations of the pipeline could explore performance
speed-ups in each step of the image processing, including pre-
processing and postprocessing. Specifically, triples mode [16]
can enhance our understanding of organizing and distributing
data across nodes by specifically allocating the number of
threads and processes per N nodes. A deeper analysis into
the bottlenecks and time leaks may expose further areas
of improvement as well as indicate the importance of each
step. However, code optimization is a recommended first
step, particularly in the implementation of split and stitch
operations. For the prediction step, an interesting PyTorch
module [17] may improve upon the use of DataParallel by
distributing across multiple GPUs. Most literature on this area
of parallelization concerns model training, which suggests
the creation of a generalized pipeline for multiple model
operations (training and inference).

Since HPC is a shared resource, a job array requesting
N nodes may wait for a subset of N to become available
and thus increase the wall time. As a job submission, this
pipeline may benefit from a SLURM interface that prompts
the user to select a particular N number of nodes based on the
number of jobs currently submitted by other users. Per this
method, the wall time will be longer than anticipated, but will
attempt to be the shortest given the current number of available
nodes. Another potential solution would be to experiment with
stitching in real-time. In other words, combine the inference
and stitch steps into a single job array submission that listens
for complete inferences to begin stitching in real-time.

For the applicability of the inference speed-up, the pipeline
should further explore input volumes that are diverse in shape
and content density. A potential speed-up for less dense
datasets is trimming or removing uninformative frames, such
as those with a majority of background (zero intensity) voxels.
The further consultation by experts in the intersecting areas of
research (image processing, distributed systems, neuroscience,
etc.) will enhance the development of these tools and gener-
alize the use across domains.

ACKNOWLEDGMENT

The authors would like to acknowledge Adam Michaleas
and the MIT Lincoln Laboratory Supercomputing Center
(LLSC) for their support of high performance computing tasks.

REFERENCES

[1] J. W. Lichtman, H. Pfister, and N. Shavit, “The big data challenges of
connectomics,” Nature neuroscience, vol. 17, no. 11, pp. 1448–1454,
2014.

[2] E. Plebani, N. P. Biscola, L. A. Havton, B. Rajwa, A. S. Shemonti,
D. Jaffey, T. Powley, J. R. Keast, K.-H. Lu, and M. M. Dundar, “High-
throughput segmentation of unmyelinated axons by deep learning,”
Scientific Reports, vol. 12, no. 1, pp. 1–16, 2022.

[3] F. Xu, Y. Shen, L. Ding, C.-Y. Yang, H. Tan, H. Wang, Q. Zhu, R. Xu,
F. Wu, Y. Xiao et al., “High-throughput mapping of a whole rhesus
monkey brain at micrometer resolution,” Nature biotechnology, vol. 39,
no. 12, pp. 1521–1528, 2021.

[4] J. Park, J. Wang, W. Guan, L. Kamentsky, N. B. Evans, L. Gjesteby,
D. Pollack, S. W. Choi, M. Snyder, D. Chavez et al., “Integrated platform
for multi-scale molecular imaging and phenotyping of the human brain,”
bioRxiv, 2022.

[5] T. Ku, J. Swaney, J.-Y. Park, A. Albanese, E. Murray, J. H. Cho, Y.-G.
Park, V. Mangena, J. Chen, and K. Chung, “Multiplexed and scalable
super-resolution imaging of three-dimensional protein localization in
size-adjustable tissues,” Nature biotechnology, vol. 34, no. 9, pp. 973–
981, 2016.

[6] T. Ku, W. Guan, N. B. Evans, C. H. Sohn, A. Albanese, J.-G. Kim,
M. P. Frosch, and K. Chung, “Elasticizing tissues for reversible shape
transformation and accelerated molecular labeling,” Nature methods,
vol. 17, no. 6, pp. 609–613, 2020.

[7] T. Klinghoffer, P. Morales, Y.-G. Park, N. Evans, K. Chung, and L. J.
Brattain, “Self-supervised feature extraction for 3d axon segmentation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2020, pp. 978–979.

[8] D. Pollack, L. A. Gjesteby, M. Snyder, D. Chavez, L. Kamentsky,
K. Chung, and L. J. Brattain, “Axon centerline detection using
topologically-aware 3D U-Nets,” in International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC), 2022.

[9] K. Lee, J. Zung, P. Li, V. Jain, and H. S. Seung, “Superhuman
accuracy on the SNEMI3D connectomics challenge,” arXiv preprint
arXiv:1706.00120, 2017.

[10] S. Shit, J. C. Paetzold, A. Sekuboyina, I. Ezhov, A. Unger, A. Zhylka,
J. P. Pluim, U. Bauer, and B. H. Menze, “cldice-a novel topology-
preserving loss function for tubular structure segmentation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 16 560–16 569.

[11] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel
Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60.

[12] Dataparallel documentation. [Online]. Available: https://pytorch.org/
docs/stable/generated/torch.nn.DataParallel.html

[13] A. Collette, J. Tocknell, T. A. Caswell, D. Dale, U. K. Pedersen,
A. Jelenak, A. Bedini, M. Raspaud, jialin, L. Hole, M. Brucher,
M. Teichmann, G. A. Vaillant, jakirkham, K. Hinsen, P. de Buyl,
A. Huebl, F. Rathgeber, T. Verstraelen, S. Sort, S. G. Ebner,
smutch, M. Zwier, A. Lee, M. Brett, J. Kleinhenz, J. Bernhard,
and J. Tyree. (2017, Mar.) h5py/h5py: 2.4.0. [Online]. Available:
https://doi.org/10.5281/zenodo.400660

[14] Numpy documentation: array split. [Online]. Avail-
able: https://numpy.org/doc/stable/reference/generated/numpy.array
split.html#numpy.array split

[15] C. Byun, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally, M. Houle,
M. Hubbell, M. Jones, A. Klein, P. Michaleas et al., “Node-based
job scheduling for large scale simulations of short running jobs,” in
2021 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2021, pp. 1–7.

[16] A. Weinert, M. Brittain, N. Underhill, and C. Serres, “Benchmarking the
processing of aircraft tracks with triples mode and self-scheduling,” in
2021 IEEE High Performance Extreme Computing Conference (HPEC),
2021, pp. 1–8.

[17] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li,
A. Paszke, J. Smith, B. Vaughan, P. Damania, and S. Chintala, “Pytorch
distributed: Experiences on accelerating data parallel training,” Proc.
VLDB Endow., vol. 13, no. 12, p. 3005–3018, aug 2020. [Online].
Available: https://doi.org/10.14778/3415478.3415530

978-1-6654-9786-2/22/$31.00 ©2022 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on April 11,2023 at 19:03:14 UTC from IEEE Xplore. Restrictions apply.

